Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 185
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124175, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38565051

Copper is an essential trace element in the human body, and its level is directly related to many diseases. While the source of copper in human body is mainly intake from food, then the detection of copper ions (Cu2+) in food becomes crucial. Here, we synthesized a novel probe (E)-3-hydroxy-2-styryl-4H-benzo[h]chromen-4-one (NSHF) and explored the binding ability of NSHF for Cu2+ using nuclear magnetic resonance hydrogen spectroscopy (1H NMR), high-resolution mass spectrometry (HRMS), Job's plot method and density functional theory (DFT). NSHF shows the advantages of fast response time, good selectivity and high sensitivity for Cu2+. The fluorescence intensity ratio (F/F0) of NSHF shows a good linear relationship with the concentration of Cu2+ and the detection limit is 0.061 µM. NSHF was successfully applied to the detection of Cu2+ in real samples. In addition, a simple and convenient Cu2+ detection platform was constructed by combining NSHF with a smartphone and a UV lamp, which can realize the rapid detection of Cu2+. This work provides an effective tool for the real-time detection of Cu2+.


Copper , Fluorescent Dyes , Humans , Copper/analysis , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence , Ions/analysis , Food
2.
J Agric Food Chem ; 72(17): 10097-10105, 2024 May 01.
Article En | MEDLINE | ID: mdl-38630689

With the booming development of food manufacturing, developing ideal analytical tools to precisely quantify food additives is highly sought after in the food science field. Herein, a new series of quinoline-derived multifunctional fluorescent probes has been synthesized. Bearing double reactive sites, these compounds display fluorescence response toward both bisulfite (HSO3-) and hypochlorous acid (HClO). Among these compact structures, compound ethyl-2-cyano-3-(6-(methylthio)quinolin-2-yl)acrylate (QTE) was screened out. Probe QTE not only shows ratiometric variation toward HSO3- with little cross talk but also performs turn-off signal toward HClO. In addition, probe QTE has been utilized for bioimaging of HClO in living cells. Furthermore, the HSO3- content in dried food samples has been appraised by QTE with satisfactory results. Meanwhile, relying on the apparent chromaticity change, a flexible dark-box device has been elaborated for chromatic analysis, promoting visualization of HSO3- in the field.


Fluorescent Dyes , Hypochlorous Acid , Quinolines , Sulfites , Fluorescent Dyes/chemistry , Quinolines/chemistry , Hypochlorous Acid/analysis , Humans , Sulfites/analysis , Sulfites/chemistry , Food Analysis/methods
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124288, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38636427

Realizing the accurate recognition and quantification of heavy metal ions is pivotal but challenging in the environmental, biological, and physiological science fields. In this work, orange fluorescence emitting quantum dots (OQDs) have been facilely synthesized by one-step method. The participation of silver ion (Ag+) can evoke the unique aggregation-induced emission (AIE) of OQDs, resulting in prominent fluorescence enhancement, which is scarcely reported previously. Moreover, the Ag+-triggered turn-on fluorescence can be continuously shut down by mercury ion (Hg2+). This intriguing sequential fluorescence variation exhibits great sensing potency for discrimination and quantification of Ag+ and Hg2+. Meanwhile, our OQDs also exhibit good selectivity, sensitivity, and rapid response toward Ag+ and Hg2+ detection. Due to their high performance, OQDs have been applied to the determination of Ag+ and Hg2+ levels in daily necessities and water samples with satisfactory results. Moreover, a portable smartphone-assisted sensing platform based on chromatic change has been constructed, facilitating the real-time and naked-eye visualization in the resource-confined scene. We anticipate that the discovery of these OQDs would be advantageous for exploring novel QDs materials for fluorescence detection.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123993, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38340447

The considerable risk posed by Au3+ residues to the environment and human health has sparked interest in researching Au3+ monitoring techniques. The detection results in the usual ratio mode are more reliable. In this work, we develop a dual-mode strategy based on reducing carbon dots coupling with two-signal ratiometric and colorimetric methods for high-sensitivity, good-selectivity, and wide-range detection of Au3+. Cyan carbon dots (C-CDs) were synthesized by a simple and efficient one-step hydrothermal method. The C-CDs with rich amino group used m-phenylenediamine as carbon source, which made it have the potential as a reducing agent. After the addition of Au3+, Au3+ was reduced to Au0, generating stable gold nanoparticles (AuNPs). The fluorescence signal (F490) of C-CDs decreased. At the same time, the large size of AuNPs enhances the second-order scattering signal (S770) and produces the UV-visible absorption peak of AuNPs. Therefore, the dual-mode sensing strategy combining S770/F490 ratiometric and colorimetric detection of Au3+ is realized with high accuracy and sensitivity. Au3+ was determined in real samples and a good recovery was obtained. The dual-mode method has good performance and practicality, so it shows great potential for environment testing in a simple and reliable way.

5.
Anal Chim Acta ; 1288: 342173, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38220304

BACKGROUND: Hydrazine (N2H4) is a highly toxic and versatile chemical raw material, which poses a serious threat to the environment and human health when used in large quantities. However, the traditional methods for the detection of N2H4 have the disadvantages of time-consuming, complicated operation and expensive instruments. In contrast, fluorescence probes have many advantages, such as simple operation, high sensitivity, good selectivity, and fast response time. Therefore, there is an urgent need for a fluorescence probe that can rapidly and accurately detect the presence of N2H4 and monitor the changes in its concentration. RESULTS: For this purpose, we designed and synthesized a series of myricetin fluorescence probes 3-(substituent group)-5,7-dimethoxy-4-oxo-2-(3,4,5-trimethoxy. phenyl)-4H-chromen-4-one (Myr-R) for N2H4 detection. In the presence of N2H4, the probe 5,7-dimethoxy-3-(2,3,4,5,6-pentafluorobenzoate)-2-(3,4,5-trimethoxyphen-yl). -4H-chr-omen-4-one (Myr-3) shows significant fluorescence changes, double emission properties and a large Stokes shift (183 nm), and exhibits high selectivity and sensitivity to N2H4 (The detection limit is 93 nM). Importantly, the qualitative and quantitative analysis of N2H4 in water, soil, and air can be accomplished using fluorescence, smartphone, and UV lamps coupled with Myr-3. In addition, Myr-3 can be used for monitoring and imaging intracellular N2H4. Meanwhile, the fluorophore 3-hydroxy-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-benzopyran-4-one (Myr-Me) was applied to fingerprinting of different substrate materials due to the fact that it exhibits strong yellow fluorescence emission in the solid state and shows excellent contrast and high resolution. SIGNIFICANCE: The probe Myr-3 is not only able to rapidly detect N2H4 in complex environments, but also can be used for imaging intracellular N2H4. In addition, the fluorophore Myr-Me can be used as an effective imaging agent for visual fingerprinting. These properties enable the probe Myr-3 and the fluorophore Myr-Me for a wide range of potential applications in related fields.


Flavonoids , Water , Humans , HeLa Cells , Water/chemistry , Hydrazines/analysis , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods
6.
Anal Chem ; 95(51): 18859-18870, 2023 Dec 26.
Article En | MEDLINE | ID: mdl-38096265

Trivalent Au ions are easily reduced to be zerovalent atoms by coexisting reductant reagents, resulting in the subsequent accumulation of Au atoms and formation of plasmonic nanostructures. In the absence of stabilizers or presence of weak stabilizers, aggregative growth of Au nanoparticles (NPs) always occurs, and unregular multidimensional Au materials are consequently constructed. Herein, the addition of nanomole-level mercury ions can efficiently prevent the epitaxial accumulation of Au atoms, and separated Au NPs with mediated morphologies and superior plasmonic characteristics are obtained. Experimental results and theoretical simulation demonstrate the Hg-concentration-reliant formation of plasmonic nanostructures with their mediated sizes and shapes in the presence of weak reductants. Moreover, the sensitive plasmonic responses of reaction systems exhibit selectivity comparable to that of Hg species. As a concept of proof, polymeric carbon dots (CDs) were used as the initial reductant, and the reactions between trivalent Au and CDs were studies. Significantly, Hg atoms prevent the epitaxial accumulation of Au atoms, and plasmonic NPs with decreased sizes were in situ synthesized, corresponding to varied surface plasmonic resonance absorption performance of the CD-induced hybrids. Moreover, with the integration of sensing substrates of CD-doped hydrogels, superior response stabilities, analysis selectivity, and sensitivity of Hg2+ ions were achieved on the basis of the mercury-mediated in situ chemical reactions between trivalent Au ions and reductant CDs. Consequently, a high-performance sensing strategy with the use of Au NP-staining hydrogels (nanostaining hydrogels) was exhibited. In addition to Hg sensing, the nanostaining hydrogels facilitated by doping of emerging materials and advanced chem/biostrategies can be developed as high-performance on-site monitoring routes to various pollutant species.

7.
Anal Chem ; 95(43): 15965-15974, 2023 10 31.
Article En | MEDLINE | ID: mdl-37851944

Owing to the predominance of dopamine (DA) in controlling mental health, planning an innovative method for DA detection with simplicity and high efficacy is conducive to the assessment of neurological disorders. Herein, an efficient fluorogenic tactic has been elaborated for ultrasensitive detection of DA with remarkably enhanced turn-on response. Utilizing a twisted intramolecular charge-transfer (TICT)-suppressing strategy, a highly emissive azocine derivative 11-hydroxy-2,3,6,7,11,12,13,14-octahydro-1H,5H,10H-11,14a-methanoazocino[5',4':4,5]furo[2,3-f]pyrido[3,2,1-ij]quinolin-10-one (J-Aza) is generated via a one-step reaction between DA and 8-hydroxyjulolidine. It is marvelous that J-Aza not only possesses ideal fluorescence quantum yield (ΦF) as high as 0.956 but also exhibits bathochromic shifted fluorescence (green emissive) and stronger anti-photobleaching capacity superior to traditional azocine-derived 1,2,3,4-tetrahydro-5H-4,11a-methanobenzofuro[2,3-d]azocin-5-one (Aza) with moderate ΦF, blue fluorescence, and poor photostability. By confining the TICT process, the detection limit to DA can be reduced to 80 pM, which is competitive in contrast to previously reported fluorescence methods. Encouraged by the instant response (within 90 s), wide linear range (0.1-500 nM), great selectivity, and excellent sensitivity, this fluorogenic method has been used for the real-time measurement of DA contents in practical urine samples with satisfactory results. Furthermore, the cerebral DA level in the reserpine-induced depression rat model has also been evaluated by our designed method, demonstrating its potent analytical applicability in the biosensing field.


Biosensing Techniques , Dopamine , Animals , Rats , Biosensing Techniques/methods , Limit of Detection , Fluorescent Dyes , Azocines , Brain
8.
J Colloid Interface Sci ; 652(Pt B): 1665-1672, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37666198

The rational design of electrocatalysts with exceptional performance and durability for hydrogen production in alkaline medium is a formidable challenge. In this study, we have developed in-situ activated ruthenium nanoparticles dispersed on Ni3N nanosheets, forming a bifunctional electrocatalyst for hydrogen evolution and urea oxidation. The results of experimental analysis and theoretical calculations reveal that the enhanced hydrogen evolution reaction (HER) performance of O-Ru-Ni3N stems primarily from the optimized hydrogen adsorption and hydroxyl adsorption on Ru sites. The O-Ru-Ni3N on nickel foam (NF) electrode exhibits excellent HER performance, requiring only 29 mV to reach 10 mA cm-2 in an alkaline medium. Notably, when this O-Ru-Ni3N/NF catalyst is employed for both HER and urea oxidation reaction (UOR) to create an integrated H2 production system, a current density of 50 mA cm-2 can be generated at the cell voltage of 1.41 V. This report introduces an energy-efficient catalyst for hydrogen production and proposes a viable strategy for anodic activation in energy chemistry.

9.
Biosens Bioelectron ; 241: 115691, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37738803

For discriminating diverse analytes and monitoring a specific chemical reaction, the emerging multi-channel "chemical nose/tongue" is challenging multi-material "chemical nose/tongue". The former contributes greatly to integrating different transduction principles from a single sensing material, avoiding the need for complex design, high cost, and tedious operation involved with the latter. Therefore, this high-order sensing puts a particular emphasis on the effects of encapsulation. Herein, the plasmonic gold nanoparticles (Au NPs) are encapsulated as a core into the fluorescent guanine monophosphate-Tb3+ infinite coordination polymer nanoparticles (GMP-Tb ICPs) to obtain a core-shell nanocomposite named Au NPs@GMP-Tb ICPs. Hence, a dual-channel "chemical tongue" based on Au NPs@GMP-Tb ICPs is present to realize high-order sensing of adenosine triphosphate (ATP)-related physiological phosphates and the monitoring of ATP hydrolysis. Considering the affinity of Tb3+ towards P-O bonds, four inorganic phosphates and three nucleotide phosphates with different phosphate group numbers and steric hindrance effect directly regulate two stimulus responses (fluorescence intensity and UV-vis absorbance) of Au NPs@GMP-Tb ICPs. Robust statistical methods, such as linear discriminant analysis and hierarchical cluster analysis, are used to recognize each phosphate by the developed sensor array either in the aqueous solution or in complex media such as serum, together with efficiently monitored ATP hydrolysis at different intervals. These findings and blind test clarify that the designed "chemical tongue" guarantees interference resistance and strengthens analytical capacity, together with offering valuable insight into "lab-on-a-nanoparticle" development for monitoring specific chemical reactions.


Biosensing Techniques , Metal Nanoparticles , Adenosine Triphosphate/analysis , Gold/chemistry , Hydrolysis , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Phosphates
10.
J Colloid Interface Sci ; 651: 760-768, 2023 Dec.
Article En | MEDLINE | ID: mdl-37572613

Studying interfacial charge transfer is of great significance for the preparation of electrocatalysts with high activity for the hydrogen evolution reaction (HER). Particularly, exploring the in-depth catalytic mechanisms and facile fabrication methods of narrow bandgap metal phosphides remains worthwhile. This work successfully combined catalytically inert n-type Nb2O5 with p-type CoP to prepare a p-n heterojunction (CoP-Nb2O5). The self-supporting heterojunction was fabricated by gas-phase phosphorization of the Co(OH)2-Nb2O5 precursor obtained through hydrothermal-electrodeposition strategy. By analyzing the electronic and band structures of CoP and Nb2O5, it was found that there exists a built-in electric field (BEF) in the heterojunction. This BEF can modulate the electronic structure of CoP at the interface, enhance its intrinsic activity and accelerate charge migration. The subsequent experimental results also demonstrate that Nb2O5 can significantly enhance the activity and stability of CoP. Our findings can serve as a novel perspective on the application of p-n heterojunction in the field of energy storage and conversion.

11.
Anal Bioanal Chem ; 415(19): 4639-4647, 2023 Aug.
Article En | MEDLINE | ID: mdl-37268746

Bisulfite (HSO3-) and sulfite (SO32-) are commonly employed in food preservatives and are also significant environmental pollutants. Thus, developing an effective method for detecting HSO3-/SO32- is crucial for food safety and environment monitoring. In this work, based on carbon dots (CDs) and zeolitic imidazolate framework-90 (ZIF-90), a composite probe (named CDs@ZIF-90) is constructed. The fluorescence signal and the second-order scattering signal of CDs@ZIF-90 are employed to ratiometricly detect HSO3-/SO32-. This proposed strategy exhibits a broad linear range for HSO3-/SO32- determination (10 µM to 8.5 mM) with a limit of detection of 2.74 µM. This strategy is successfully applied for evaluating HSO3-/SO32- in sugar with satisfactory recoveries. Therefore, this work has uniquely combined the fluorescence and second-order scattering signals to establish a novel sensing system with a wide linear range, which is applicable for ratiometric sensing of HSO3-/SO32- in actual samples.


Metal-Organic Frameworks , Quantum Dots , Sugars , Limit of Detection , Carbohydrates , Sulfites , Carbon , Fluorescent Dyes
12.
Biosens Bioelectron ; 231: 115295, 2023 Jul 01.
Article En | MEDLINE | ID: mdl-37058959

The circulating tumor DNA (ctDNA) is a crucial cancer marker, its sensitive monitoring is useful for early diagnose and therapy of tumor-related diseases. Herein, a bipedal DNA walker with multiple recognition sites is designed through the transition of dumbbell-shaped DNA nanostructure to realize the dual amplification of the signal and achieve ultrasensitive photoelectrochemical (PEC) detection of ctDNA. Initially, the ZnIn2S4@AuNPs is obtained by combining the drop coating method with electrodeposition method. When the target is present, the dumbbell-shaped DNA structure transforms into an annular bipedal DNA walker that can walk unrestrictedly on the modified electrode. After the cleavage endonuclease (Nb.BbvCI) was added to the sensing system, the ferrocene (Fc) on the substrate is released from the electrode surface, and the transfer efficiency of photogenerated electron-hole pairs is extremely improved, enabling the "signal on" testing of ctDNA. The detection limit of the prepared PEC sensor is 0.31 fM, and the recovery of actual samples varied between 96.8 and 103.6% with an average relative standard deviation of about 8%. Meaningfully, the prepared PEC biosensor with an innovative bipedal DNA walker has potential application value for ultrasensitive detection of other nucleic acid-related biomarker.


Biosensing Techniques , Circulating Tumor DNA , Metal Nanoparticles , Neoplasms , Humans , DNA, Circular , Gold/chemistry , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection , DNA/chemistry , Neoplasms/diagnosis
13.
Anal Chim Acta ; 1254: 341122, 2023 May 08.
Article En | MEDLINE | ID: mdl-37005029

Realizing the rapid and sensitive tracing of multiple analysis indicators using single molecular probe through structural designing is urgently desired for exploring novel multi-response chemosensors. Herein, a series of acrylonitrile-bridging organic small molecules have been rationally designed. Among these donor-π-acceptor (D-π-A) compounds with efficient aggregation-induced emission (AIE) characteristics, a unique derivative, 2-(1H-benzo[d]imidazole-2-yl)-3-(4-(methylthio)phenyl) acrylonitrile, named MZS, has been screened out for multifunctional utilizing. First, probe MZS can respond to hypochlorous acid (HClO) through specific oxidation reaction, showing a marked fluorescence turn-on signal (I495). This special sensing reaction is ultra-fast with a rather low detection limit (LOD = 13.6 nM). Next, versatile MZS is also sensitive to the extreme pH fluctuation, displaying an intriguing ratiometric signal variation (I540/I450), facilitating the real-time and naked-eye visualizing, which is even stable and reversible. Furthermore, probe MZS has been used for the monitoring of HClO in real water and commercially available disinfectant spray samples with satisfactory results. We envision that probe MZS would be a flexible and powerful tool for monitoring of environmental toxicity and industrial operations under realistic scenarios.

14.
Anal Chim Acta ; 1246: 340866, 2023 Mar 15.
Article En | MEDLINE | ID: mdl-36764770

Ratiometric fluorescence sensors gain stronger anti-interference ability via self-calibration. Nevertheless, ratiometric analysis of phosphate (Pi) still faces problems such as complicated construction process of dual emission probes and possible interferences from outputting mono-category fluorescent signal. Herein, we propose a "kill two birds with one stone" strategy to address these challenges, by simply introducing a single-component probe, porphyrin paddlewheel framework-3 (PPF-3) nanosheets without modification, encapsulation or complex, to integrate fluorescence (FL)-second-order scattering (SOS) dual-signal for ratiometric detection of Pi. PPF-3 nanosheets are constructed by coordination of Co2+ with 5,10,15,20-tetrakis(4-carboxyl-phenyl)-porphyrin (TCPP) ligands, displaying weak FL and strong SOS, two different and independent signals. In the response system to Pi, Co2+ and TCPP serve as the recognition element and signal unit, respectively. After interacting with Pi, the high affinity for Co2+ makes Pi snatch Co2+ from the PPF-3 nanosheets, causing their structure disassembly (SOS decrease) and TCPP release (FL increase). Finally, the FL-SOS ratiometric platform is successfully employed to access Pi in real water samples. Synchronous collection of FL and SOS from the single-component probe provides a simpler and more efficient way on ratiometric sensor design as well as a new useful technique for monitoring target-induced aggregation and disaggregation behavior.


Fluorescent Dyes , Porphyrins , Fluorescent Dyes/chemistry , Phosphates , Spectrometry, Fluorescence/methods
15.
Langmuir ; 39(8): 3052-3061, 2023 Feb 28.
Article En | MEDLINE | ID: mdl-36787386

The way of accurately regulating the growth of chiral plasmonics is of great importance for exploring the chirality information and improving its potential values. Herein, cysteine enantiomers modulate the anisotropic and epitaxial growth of gold nanoplasmonics on seeds of exfoliated MoS2 nanosheets. The heterostructural Au and MoS2 hybrids induced by enantiomeric cysteine are presented with chiroptical characteristics, dendritic morphologies, and plasmonic performances. Moreover, the synthesis, condition optimization, formation mechanism, and plasmonic properties of Au and MoS2 dendritic nanostructures are studied. The chirality characteristics are identified using the circular dichroism spectra and scanning electron microscopy. Time-resolved transmission electron microscopy and UV-vis spectra of the intermediate products captured are analyzed to confirm the formation mechanism of dendritic plasmonic nanostructures at heterostructural surfaces. The specific dendritic morphologies originate from the synergistic impacts of heterostructural MoS2 interfaces and enantiomeric cysteine-induced anisotropic manipulation. Significantly, the developed synthesis strategy of chiral nanostructures at heterostructural interfaces is highly promising in promoting the understanding of the plasmonic function and crucial chirality bioinformation.

16.
Inorg Chem ; 62(6): 2784-2792, 2023 Feb 13.
Article En | MEDLINE | ID: mdl-36705969

Efficient electrocatalysts require not only a tunable electronic structure but also great active site accessibility and favorable mass transfer. Here, a two-dimensional/three-dimensional (2D/3D) hierarchical electrocatalyst consisting of Co(OH)2-CeO2 nanosheet-decorated Co dendrites is proposed, named as Co(OH)2-CeO2/Co. Based on the strong electronic interaction of the Co(OH)2-CeO2 heterojunction, the electronic structure of the Co site is optimized, which facilitates the adsorption of intermediates and the dissociation of H2O. Moreover, the open 2D/3D structure formed by introducing the Co substrate further reduces the accumulation of heterogeneous nanosheets and promotes the radial diffusion of the electrolyte, significantly improving the utilization of active sites and shortening the electron transfer pathway. In addition, the superhydrophilic/superaerophobic interface achieved by constructing the hierarchical micro-nanostructure is beneficial to electrolyte infiltration and bubble desorption, thus ensuring favorable mass transfer. Therefore, Co(OH)2-CeO2/Co exhibits an excellent overall water-splitting activity in alkaline solution.

17.
Food Chem ; 407: 135120, 2023 May 01.
Article En | MEDLINE | ID: mdl-36495742

Thiophenols (ArSHs) are widely used as popular flavoring ingredients for making daily dishes. Dissecting the ArSHs contents in common foodstuffs is meaningful in the field of food safety science. Herein, a novel small-molecule sensor 2-(1H-benzo[d]imidazol-2-yl)-3-(2-(2,4-dinitrophenoxy)-4-morpholinophenyl)acrylonitrile (NOSA) has been tailored. The NOSA is able to respond to ArSHs, spontaneously yielding highly green-emissive fluorescent iminocoumarin (I500). This cascade reaction-based strategy is sensitive (limit-of-detection = 2.8 nM), rapid (within 5 min), and selective toward ArSH flavors. Probe NOSA has been applied to the determination of ArSHs in real-life meat products and condiments. Moreover, a far-red fluorescent compound, 2-(7-(diethylamino)-4-(4-(methylthio)styryl)-2H-chromen-2-ylidene)malononitrile (CMMT), has been first combined with NOSA to construct a composite probe NOSA@CMMT for the ratiometric detection of ArSHs (I500/I630). System NOSA@CMMT exhibits a conspicuous fluorescence change from deep-red to light-green. Benefitted from the gorgeous chromatic fluctuation, a smartphone-integrated analysis platform is established for the real-time evaluation of ArSHs level.


Fluorescent Dyes , Meat Products , Meat Products/analysis , Phenols/analysis , Spectrometry, Fluorescence , Condiments/analysis
18.
Food Chem ; 405(Pt B): 134961, 2023 Mar 30.
Article En | MEDLINE | ID: mdl-36435107

Bisulfite (HSO3-) is used as a food additive for its antibacterial and antioxidant properties. However, excessive intake of HSO3- is harmful to humans. Here, for the first time, aldehyde-functionalized dual-emissive carbon dots (D-CDs) are synthesized in one-step for direct ratiometric sensing of HSO3-. Due to the nucleophilic addition reaction between HSO3- and aldehyde of D-CDs, the fluorescence transforms from green to deep-blue. The linear range of the probe is 0.1-30 µmol/L with a detection limit of 42 nmol/L. Moreover, D-CDs show good selectivity and a fast reaction time (<5 min) toward HSO3-. The probe has been applied to trace HSO3- detection in food samples. The recoveries range from 96.5 % to 107.0 % with relative standard deviations below 6.5 %. In addition, a smartphone sensing platform has been designed, which provides a wider application prospect for the real-time monitoring of HSO3- in food.


Aldehydes , Carbon , Humans , Fluorescence , Sulfites
19.
Nat Commun ; 13(1): 7289, 2022 11 26.
Article En | MEDLINE | ID: mdl-36435865

The transfer of the concept of chirality from molecules to synthesized nanomaterials has attracted attention amongst multidisciplinary teams. Here we demonstrate heterogeneous nucleation and anisotropic accumulation of Au nanoparticles on multilayer MoS2 planes to form chiroptically functional nanomaterials. Thiol amino acids with chiral conformations modulate asymmetric growth of gold nanoarchitectures on seeds of highly faceted Au/MoS2 heterostructures. Consequently, dendritic plasmonic nanocrystals with partial chiral morphologies are synthesized. The chirality of dendritic nanocrystals inherited from cysteine molecules refers to the structural characteristics and includes specific recognition of enantiomeric molecules. With integration of the intrinsic photothermal properties and inherited enantioselective characteristics, dendritic Au/MoS2 heterostructures exhibit chirality-dependent release of antimicrobial drugs from hydrogel substrates when activated by exogenous infrared irradiation. A three-in-one strategy involving synthesis of chiral dendritic heterostructures, enantioselective recognition, and controlled drug release system is presented, which improves nanomaterial synthetic technology and enhances our understanding of crucial chirality information.


Anti-Infective Agents , Metal Nanoparticles , Gold/chemistry , Stereoisomerism , Metal Nanoparticles/chemistry , Molybdenum , Anti-Infective Agents/pharmacology
20.
Food Chem ; 397: 133754, 2022 Dec 15.
Article En | MEDLINE | ID: mdl-35882164

Herein, a novel hemicyanine derivative (E)-3-(1,1-dimethyl-2-(4-(methylthio)styryl)-1H-benzo[e]indol-3-ium-3-yl)propane-1-sulfonate (BIS) has been reasonably designed. Compound BIS is long-wavelength emissive and water-soluble with a large Stokes shift. Intriguingly, probe BIS provides a dual-mode fluorescence response pattern for the sensing of bisulfite (HSO3-) and hypochlorous acid (HClO) with great limit of detections (3.6 and 57.4 nM). First, the 1,4-Michael addition of HSO3- on the conjugated double bond triggers a ratiometric response (I465/I575). Second, the rapid oxidation of HClO on the thioether moiety provides a turn-on response (I575). Evaluation of HSO3- and HClO levels in dried fruit, beverage, and water samples has been carried out with satisfactory results. Moreover, motivated by an impressive chromatic variation (red to blue), smartphone-assisted signal readout system and thin-film sensing platform are facilely constructed for real-time and on-site measurement of HSO3- levels. Furthermore, probe BIS is used for the in vivo imaging of HSO3- in edible fish models.


Fluorescent Dyes , Fruit , Animals , Beverages , Fluorescent Dyes/chemistry , Hypochlorous Acid , Water
...